000 a
999 _c15661
_d15661
003 OSt
005 20211221110736.0
008 211221b xxu||||| |||| 00| 0 eng d
040 _aAIKTC-KRRC
_cAIKTC-KRRC
245 _aGreen approach for the synthesis of silver nanoparticles using Bryophyllum pinnatum
250 _aVol.15(3), Jul-Sep
260 _aMandsaur
_bB.R. Nahata Smriti Sansthan
_c2021
300 _a307-312p.
520 _a Introduction: Nanotechnology has opened up novel dimensions in the field of biotechnology and medicine. Green synthesis of silver nanoparticles (AgNPs) is a clean, cost effective, and non-toxic over synthetic methods. Silver is the metal of choice as they hold the promise to kill microbes effectively. AgNPs have been recently known to be a promising antimicrobial agent that acts on a broad range of target sites both extracellularly and intracellularly. Green synthesis of AgNPs has been estimated to be rich with phytochemicals such as alkaloids, triterpenes, flavonoids, glycosides, steroids lipids, and organic acids that are extracted from various medicinal plants. Materials and Methods: An aim to synthesize and optimize the AgNPs of Bryophyllum pinnatum leaf extract within 10 min at microwave (100 W) temperature conditions was carried out. The synthesized nanoparticles were characterized using ultraviolet–visible spectrophotometer, scanning electron microscopy, and Fourier transform infrared (FT-IR). Results: The carbonyl group that of amino acid residues has a power to bind with silver which suggested this of a layer covering AgNPs and acts as a capping agent and prevents agglomeration and assists in resist changes due to medium. The silver nanoparticles thus formed were well capped which were observed by FT-IR and showed antibacterial activity against Escherichia coli and Bacillus subtilis. Conclusion: The present investigation has evaluated that leaf extract of B. pinnatum has a potential source of reducing and capping agent for the synthesis of AgNPs. The synthesized AgNPs showed a strong antibacterial activity which is very important from the aspects of its biomedical application.
650 0 _94639
_aPHARMACEUTICS
700 _914911
_aSharada, P.
773 0 _dMandsaur B.R. Nahata Smriti Sansthan
_tInternational journal of green pharmacy
856 _uhttp://greenpharmacy.info/index.php/ijgp/article/view/3159
_yFull Text
942 _2ddc
_cAR