Novel Strategy for Weight Initialization in Sigmoidal Feed-forward Artificial Neural Networks

Chaurasia, Rajashree

Novel Strategy for Weight Initialization in Sigmoidal Feed-forward Artificial Neural Networks - Vol 5 (1), Jan- Apr - New Delhi STM Journals 2018 - 62-75p.

paper, a novel method of weight initialization is proposed. The proposed method of weight initialization distributes the initial weights and thresholds in such a manner that they lie in different regions of the activation function used at the hidden layer. The proposed method is compared with six other popular weight initialization methods on ten function approximation problems using the RPROP (Resilient Back-propagation) and Levenberg-Marquardt algorithms for training. Two types of activation functions viz. tan hyperbolic and logarithmic sigmoidal functions are used for analysis and comparison.


Computer Engineering
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.