Use of Centrifuge-Based Physical Modelling for Understanding the Performance of Geostructures (Record no. 15382)

MARC details
000 -LEADER
fixed length control field a
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20211012155654.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 211012b xxu||||| |||| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency AIKTC-KRRC
Transcribing agency AIKTC-KRRC
100 ## - MAIN ENTRY--PERSONAL NAME
9 (RLIN) 13433
Author Viswanadham, B. V. S.
245 ## - TITLE STATEMENT
Title Use of Centrifuge-Based Physical Modelling for Understanding the Performance of Geostructures
250 ## - EDITION STATEMENT
Volume, Issue number Vol.51(1), February
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Germany
Name of publisher, distributor, etc. Springer
Year 2021
300 ## - PHYSICAL DESCRIPTION
Pagination 154-164p.
520 ## - SUMMARY, ETC.
Summary, etc. Centrifuge-based physical modelling is widely adopted for understanding the performance of geostructures, like levees subjected to flooding and drawdown and geogrid-reinforced soil walls subjected to seepage. In this paper, an attempt has been made to bring out the advantage of centrifuge-based physical modelling to understand (i) the performance of levees subjected to flooding using a custom-designed and developed in-flight flood simulator at 30 gravities with and without chimney drain and (ii) the performance of geogrid-reinforced soil walls with and without chimney drain subjected to seepage at 40 gravities. In both the cases, silty sand was used to model soil and fine sand was used in chimney drain. All centrifuge model tests were performed using the 4.5-m-radius large-beam centrifuge facility available at IIT Bombay. Models were instrumented with linearly variable differential transformers for measuring surface settlements and pore pressure transducers to measure raise in pore water pressure within the soil at the onset of flooding for levees and at the onset of seepage for geogrid-reinforced soil walls. Additionally, digital image analyses of photographs of front elevation of levee models and geogrid-reinforced soil wall models were carried out to obtain face movements, movements of markers embedded within the levee, markers stuck to geogrid layers of reinforced soil walls at the onset of flooding and seepage. The developed in-flight flood simulator was found to be capable of generating the flood rate ranging from 2.2 to 7 m/day. Further, results of centrifuge model tests conducted on levees without any chimney drain were noticed to undergo catastrophic failure within 4.25 days of flooding-induced seepage, whereas a levee with chimney drain was found to sustain flooding-induced seepage of 37.5 days. Geogrid-reinforced soil wall was constructed with silty sand as a structural as well as backfill, without any drainage system experienced catastrophic failure. Contrary to this, geogrid-reinforced soil walls with chimney drain as an external drainage system helped in averting catastrophic failure. However, probability of piping failure near the toe region of the wall cannot be ruled out. Further, the use of geocomposite layers as an internal drainage system within the reinforced zone also explored and the placement of geocomposite layers at one-third portion of height from bottom was found to be effective.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
9 (RLIN) 4621
Topical term or geographic name entry element Civil Engineering
773 0# - HOST ITEM ENTRY
Title Indian geotechnical journal
International Standard Serial Number 0971-9555
Place, publisher, and date of publication Switzerland Springer
856 ## - ELECTRONIC LOCATION AND ACCESS
URL https://link.springer.com/article/10.1007/s40098-021-00517-8
Link text Click here
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Articles Abstract Database
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Shelving location Date acquired Total Checkouts Barcode Date last seen Price effective from Koha item type
    Dewey Decimal Classification     School of Engineering & Technology (PG) School of Engineering & Technology (PG) Archieval Section 12/10/2021   2021-2022245 12/10/2021 12/10/2021 Articles Abstract Database
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.