Study on Durability Properties of Sustainable Alternatives for Natural Fine Aggregate (Record no. 15718)

MARC details
000 -LEADER
fixed length control field a
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20211223123516.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 211223b xxu||||| |||| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency AIKTC-KRRC
Transcribing agency AIKTC-KRRC
100 ## - MAIN ENTRY--PERSONAL NAME
9 (RLIN) 15016
Author Arpita, D.
245 ## - TITLE STATEMENT
Title Study on Durability Properties of Sustainable Alternatives for Natural Fine Aggregate
250 ## - EDITION STATEMENT
Volume, Issue number Vol, 102(4). December
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. USA
Name of publisher, distributor, etc. Springer
Year 2021
300 ## - PHYSICAL DESCRIPTION
Pagination 1105-1112p.
520 ## - SUMMARY, ETC.
Summary, etc. present work focused on the durability performance of copper slag (CS) and processed granulated blast furnace slag (PGBS) as a partial replacement (0% to 50%) for natural fine aggregate (NFA) in concrete, cured for 365 days. This work was carried out to determine the ingression of chloride, sulphate, and sodium ions. Compressive strength test and splitting tensile test conducted for the specimens showed that PGBS concrete attained higher strength followed by CS concrete when compared to conventional concrete. The ingression of chloride and sulphate ions decreased in both CS and PGBS concrete after 90 days of curing. Sodium ions ingression also decreased after 180 days of curing. Microstructure studies were carried out using scanning electron microscope (SEM) which showed the dense formation of C–S–H gel in the matrix and high amount of Ca and Si ions in CS and PGBS concrete was observed using energy-dispersive spectroscopy (EDS) analysis. The basic properties like particle size and water absorption of CS and PGBS aggregates have majorly contributed in the reduction in voids in concrete. PGBS concrete has found to be an effective alternative in terms of performance, cost, availability, and environmentally friendly when compared to already exiting CS aggregates and NFA.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
9 (RLIN) 4621
Topical term or geographic name entry element Civil Engineering
700 ## - ADDED ENTRY--PERSONAL NAME
9 (RLIN) 15019
Co-Author Rajasekaran, C
773 0# - HOST ITEM ENTRY
Place, publisher, and date of publication Switzerland Springer
International Standard Serial Number 2250-2149
Title Journal of the institution of engineers (India): Series A
856 ## - ELECTRONIC LOCATION AND ACCESS
URL https://link.springer.com/article/10.1007/s40030-021-00580-7
Link text Click here
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Articles Abstract Database
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Shelving location Date acquired Total Checkouts Barcode Date last seen Price effective from Koha item type
    Dewey Decimal Classification     School of Engineering & Technology (PG) School of Engineering & Technology (PG) Archieval Section 23/12/2021   2021-2022538 23/12/2021 23/12/2021 Articles Abstract Database
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.