Cell-Laden Alginate Hydrogel Modelling using Three-Dimensional (3D) Microscale Finite Element Technique (Record no. 17598)

MARC details
000 -LEADER
fixed length control field a
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220922120630.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 220922b xxu||||| |||| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency AIKTC-KRRC
Transcribing agency AIKTC-KRRC
100 ## - MAIN ENTRY--PERSONAL NAME
9 (RLIN) 18026
Author Banerjee, A.
245 ## - TITLE STATEMENT
Title Cell-Laden Alginate Hydrogel Modelling using Three-Dimensional (3D) Microscale Finite Element Technique
250 ## - EDITION STATEMENT
Volume, Issue number Vol,103(3), June
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Kolkatta
Name of publisher, distributor, etc. Springer
Year 2022
300 ## - PHYSICAL DESCRIPTION
Pagination 301-306p
520 ## - SUMMARY, ETC.
Summary, etc. novel modelling technique using finite element analysis to mimic the mechanoresponse of cell-laden biomaterial is proposed for the use in bioinks and other tissue engineering applications. Here, a hydrogel-based composite biomaterial specimen was used consisting of 5% (V/V) HeLa cells added to alginate solution (4% W/V) and another specimen with no living cell present in alginate solution (4% W/V). Tensile test experiments were performed on both the specimens with a load cell of 25 N. The specimens were bioprinted using an in-house developed three-dimensional (3D) bioprinter. To allow for the nonlinear hyperelastic behaviour of the specimen, the specimens were loaded very slowly, at rates of 0.1 mm/min and 0.5 mm/min, during the tensile test, respectively. The microscale finite element models developed in ANSYS were loaded with similar load rates and their responses were recorded. Both the model results were validated with the experiment results. A very good agreement between the finite element model and the tensile test experiment was observed under the same mechanical stimuli. Hence, the study reveals that cell-seeded bioprinted scaffold can be virtually modelled to obtain its mechanical characteristics beforehand.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
9 (RLIN) 4626
Topical term or geographic name entry element Mechanical Engineering
700 ## - ADDED ENTRY--PERSONAL NAME
9 (RLIN) 18033
Co-Author Chowdhury, Amit Roy
773 0# - HOST ITEM ENTRY
Title Journal of the institution of engineers (India): Series C
International Standard Serial Number 2250-0545
Place, publisher, and date of publication Kolkata Institution of Engineers (India)
856 ## - ELECTRONIC LOCATION AND ACCESS
URL https://link.springer.com/article/10.1007/s40032-022-00807-x
Link text Click here
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Articles Abstract Database
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Shelving location Date acquired Total Checkouts Barcode Date last seen Price effective from Koha item type
    Dewey Decimal Classification     School of Engineering & Technology School of Engineering & Technology Archieval Section 22/09/2022   2022-1700 22/09/2022 22/09/2022 Articles Abstract Database
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.