Genetic Algorithm-Based Fundamental Frequency Optimization of Laminated Composite Shells Carrying Distributed Mass (Record no. 17699)

MARC details
000 -LEADER
fixed length control field a
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220930154335.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 220930b xxu||||| |||| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency AIKTC-KRRC
Transcribing agency AIKTC-KRRC
100 ## - MAIN ENTRY--PERSONAL NAME
9 (RLIN) 7513
Author Pal, S.
245 ## - TITLE STATEMENT
Title Genetic Algorithm-Based Fundamental Frequency Optimization of Laminated Composite Shells Carrying Distributed Mass
250 ## - EDITION STATEMENT
Volume, Issue number Vol, 103(3), June
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Kolkatta
Name of publisher, distributor, etc. Springer
Year 2022
300 ## - PHYSICAL DESCRIPTION
Pagination 389–401p
520 ## - SUMMARY, ETC.
Summary, etc. Composite plates and shells are an inevitable part of the modern structural, aerospace and marine industry. Load-carrying plates and shells must be optimized from a frequency viewpoint to avoid resonance. In the present study, a global optimization framework is developed by combining the iterative improvement ability of genetic algorithm (GA) with the brute accuracy of finite element (FE) method to optimize the fundamental frequency of composite shells. Since composites are weak in shear, the shear deformation effect is considered by using the first-order shear deformation theory in the finite element formulation. The ply angles are considered as the design variables. However, only discrete ply angles with 5° increments in the ± 90° search space are considered. Various numerical studies are carried out to check the validity and accuracy of the present FE-GA approach. A wide range of results for rectangular and cylindrical shell panels with different radius of curvatures, boundary conditions and carrying distributed mass at different positions are presented.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
9 (RLIN) 4626
Topical term or geographic name entry element Mechanical Engineering
700 ## - ADDED ENTRY--PERSONAL NAME
9 (RLIN) 10825
Co-Author Kalita, K
773 0# - HOST ITEM ENTRY
Title Journal of the institution of engineers (India): Series C
International Standard Serial Number 2250-0545
Place, publisher, and date of publication Kolkata Institution of Engineers (India)
856 ## - ELECTRONIC LOCATION AND ACCESS
URL https://link.springer.com/article/10.1007/s40032-021-00801-9
Link text Click here
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Articles Abstract Database
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Shelving location Date acquired Total Checkouts Barcode Date last seen Price effective from Koha item type
    Dewey Decimal Classification     School of Engineering & Technology School of Engineering & Technology Archieval Section 30/09/2022   2022-1767 30/09/2022 30/09/2022 Articles Abstract Database
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.