Application of ensemble machine learning for construction safety risk assessment (Record no. 18883)

MARC details
000 -LEADER
fixed length control field a
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230217111853.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 230217b xxu||||| |||| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency AIKTC-KRRC
Transcribing agency AIKTC-KRRC
100 ## - MAIN ENTRY--PERSONAL NAME
9 (RLIN) 20029
Author George, M. Rijo
245 ## - TITLE STATEMENT
Title Application of ensemble machine learning for construction safety risk assessment
250 ## - EDITION STATEMENT
Volume, Issue number Vol.103(4), Dec
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. USA
Name of publisher, distributor, etc. Springer
Year 2023
300 ## - PHYSICAL DESCRIPTION
Pagination 989-1003p.
520 ## - SUMMARY, ETC.
Summary, etc. The rising prevalence of fatalities in the construction industry has prompted management to shift from traditional approaches to more advanced methods for analysis like machine learning (ML). Each construction project must undergo a risk assessment to understand the safety status of their construction sites and adopt preventative measures to avoid catastrophic incidents. The purpose of this study is to develop a prediction model for risk assessment of construction sites using ensemble machine learning techniques. A dataset from the Occupational Safety and Health Administration database of 4847 event reports from 2015 to 2017 is used for the analysis. Firstly, the primary risk factors causing accidents are identified and were divided into four: Before Accident, After Accident, Critical Factors-1 (CR-1), and Critical Factors-2 (CR-2). Using these attribute sets, predictive models were generated with five different classifiers with the help of different methods of resampling. The analysis was executed using both simple and ensemble modelling and the latter showed better results. The best performing classifiers under each attribute set were identified. Among the different models, the Gradient Boosting model trained with a CR-2 set of attributes, exhibited the best prediction results. Throughout the study, the application of ML in safety management has proven to be effective. The predictive model developed assists the safety management team comprehend the safety status of their specific construction projects and as a result, adopt appropriate preventive measures.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
9 (RLIN) 4642
Topical term or geographic name entry element Humanities and Applied Sciences
700 ## - ADDED ENTRY--PERSONAL NAME
9 (RLIN) 20030
Co-Author Nalluri, Madhusudana Rao
773 0# - HOST ITEM ENTRY
Place, publisher, and date of publication Switzerland Springer
Title Journal of the institution of engineers (India): Series A
International Standard Serial Number 2250-2149
856 ## - ELECTRONIC LOCATION AND ACCESS
URL https://link.springer.com/article/10.1007/s40030-022-00690-w
Link text Click here
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Articles Abstract Database
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Shelving location Date acquired Total Checkouts Barcode Date last seen Price effective from Koha item type
    Dewey Decimal Classification     School of Engineering & Technology School of Engineering & Technology Archieval Section 17/02/2023   2023-0338 17/02/2023 17/02/2023 Articles Abstract Database
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.