Review on materials application in scaffold design by fused deposition method (Record no. 20728)

MARC details
000 -LEADER
fixed length control field a
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240313132227.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240313b xxu||||| |||| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency AIKTC-KRRC
Transcribing agency AIKTC-KRRC
100 ## - MAIN ENTRY--PERSONAL NAME
9 (RLIN) 20311
Author Ansari, Ali Imran
245 ## - TITLE STATEMENT
Title Review on materials application in scaffold design by fused deposition method
250 ## - EDITION STATEMENT
Volume, Issue number Vol.104(6), Dec
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. USA
Name of publisher, distributor, etc. Springer
Year 2023
300 ## - PHYSICAL DESCRIPTION
Pagination 1247-1265p.
520 ## - SUMMARY, ETC.
Summary, etc. The review article focuses on ABS-based scaffold design in fused deposition modeling (FDM) method. In tissue engineering TE, the scaffold serves as a supporting material that can be seeded with cells and/or other supplementary components, is created in vitro, and then used as an implant for damaged tissue regeneration. With regard to its mechanical characteristics and cell culture capabilities, additive manufacturing (AM) methodologies like 3-dimensional printing, stereolithography (SLA), fused deposition modeling (FDM), selective laser sintering (SLS), 3D-plotter, phase-change-jet printing, and (LDP)-low-temperature deposition can satisfactorily create such complicated and convoluted frameworks. The use of 3D printing in the healthcare profession has numerous benefits, such as the ability to personalize pharmaceutical devices, medications, and equipment, in addition to being cost efficient and improving efficiency. Customized prostheses, fixtures, and surgical instruments have a favorable influence by minimizing the time necessary for surgery and recuperation and enhancing clinical rates of success. Furthermore, in terms of boosting production, conventional production techniques like milling, casting, and machining generate objects far slower than 3D printing. Thus, this, in turn, helps in cutting down fabrication time. The bulk of studies on the use of biomaterials for 3D printing have been on biological applications. This research paper investigates how the FDM practice employs diverse biomaterials for biomedical reasons and how we can improve the porosity and mechanical qualities of the printed scaffold by combining FDM with different additional procedures (such CO2 gas foaming techniques).
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
9 (RLIN) 4626
Topical term or geographic name entry element Mechanical Engineering
700 ## - ADDED ENTRY--PERSONAL NAME
9 (RLIN) 20312
Co-Author Sheikh, Nazir Ahmad
773 0# - HOST ITEM ENTRY
Place, publisher, and date of publication Kolkata Institution of Engineers (India)
International Standard Serial Number 2250-0545
Title Journal of the institution of engineers (India): Series C
856 ## - ELECTRONIC LOCATION AND ACCESS
URL https://link.springer.com/article/10.1007/s40032-023-00988-z
Link text Click here
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Articles Abstract Database
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Shelving location Date acquired Total Checkouts Barcode Date last seen Price effective from Koha item type
    Dewey Decimal Classification     School of Engineering & Technology School of Engineering & Technology Archieval Section 13/03/2024   2024-0249 13/03/2024 13/03/2024 Articles Abstract Database
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.