Influence of ultra-fine fly ash and nanosilica on the mechanical properties of composite fiber reinforced high performance concrete (Record no. 21835)

MARC details
000 -LEADER
fixed length control field a
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20241204112616.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 241204b xxu||||| |||| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency AIKTC-KRRC
Transcribing agency AIKTC-KRRC
100 ## - MAIN ENTRY--PERSONAL NAME
9 (RLIN) 24684
Author Sairam, V.
245 ## - TITLE STATEMENT
Title Influence of ultra-fine fly ash and nanosilica on the mechanical properties of composite fiber reinforced high performance concrete
250 ## - EDITION STATEMENT
Volume, Issue number Vol.98(9), Sep
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Thane
Name of publisher, distributor, etc. ACC LTD
Year 2024
300 ## - PHYSICAL DESCRIPTION
Pagination 39-50p.
520 ## - SUMMARY, ETC.
Summary, etc. In this research, the strength properties of Composite Fiber Reinforced High-Performance Concrete (CFRHPC) have been investigated in three steps. First, when it is added with nano silica (NS). Second, when it is added with ultra-fine fly ash (UFFA) and NS. Finally, when it is added with NS, UFFA, steel fibers (SF) and polypropylene fibers (PPF). UFFA was introduced into the concrete as a partial replacement at proportions 0 and 15 % by weight of the cement. The proportions of NS used were 0, 1.5, 3.0 and 4.5 % by weight of cement. 1.0 % SF and 0.25 % PPF (1.25 % CF) were added to the above combinations. An aggregate-to- binder (A/B) ratio of 2.0 was kept constant, and three water-to-binder (w/b) ratios, 0.275, 0.300, and 0.325, for all the mix proportions were investigated. Hardened concrete tests performed were compressive, split tensile and flexural strength at 7 and 28 days. Furthermore, the impact resistance strength and shear strength of the CFRHPC mixes were evaluated after 28 days of curing. The results obtained from this investigation have been compared with the reference mix to draw useful conclusions. A maximum gain of 47 % in compressive strength, 30 % in split tensile strength and 17 % in flexural strength were observed. The results from this study revealed that 3.0 % NS in combination with 15 % UFFA is optimal to achieve augmented mechanical strength. Additionally, SF and PPF have also contributed towards improving the tensile, flexural, shear and impact performance of CFRHPC. However, their contribution towards improving compressive strength was found only marginal.<br/><br/> <br/>
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
9 (RLIN) 4690
Topical term or geographic name entry element Construction Engineering and Management (CEM)
700 ## - ADDED ENTRY--PERSONAL NAME
9 (RLIN) 24685
Co-Author Sayyad, A. S.
773 0# - HOST ITEM ENTRY
International Standard Serial Number 0019-4565
Title Indian Concrete Journal - ICJ
Place, publisher, and date of publication Thane ACC Limited
856 ## - ELECTRONIC LOCATION AND ACCESS
URL https://www.icjonline.com/editionabstract_detail/092024
Link text Click here
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Articles Abstract Database
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Shelving location Date acquired Total Checkouts Barcode Date last seen Price effective from Koha item type
    Dewey Decimal Classification     School of Engineering & Technology (PG) School of Engineering & Technology (PG) Archieval Section 04/12/2024   2024-1452 04/12/2024 04/12/2024 Articles Abstract Database
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.