Local cover image
Local cover image
Image from Google Jackets

Pre-processing of Social Media Posts

By: Contributor(s): Publication details: New Delhi STM Journals 2018Edition: Vol, 5(1), Jan- AprDescription: 14-18pSubject(s): Online resources: In: Recent trends in programming languagesSummary: Social media has become a slogan in emotion and sentiment analysis. In today’s era Social media networking sites are almost used by everyone. Social media users share their feelings, thoughts, and experiences with other people by short messages. Short messages are composed of emoticons, slangs, noises, irrelevancies and words. Thus, preprocessing becomes the challenging task for Sentiment analysis. This experiment is performed to evaluate the impact of pre-processing on social data for sentiment classification particularly for slang words. This paper focused on identification of important slang words and to evaluate their impact on sentiment analysis of social media posts. The proposed scheme collects bigrams, trigrams of slang and exploits different features for better results of sentiment classification. N-grams are used for bindings and conditional random fields (CRF) to determine the importance of slang words. Experiments declare that this proposed scheme increases the accuracy of Sentiment analysis.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Engineering & Technology Archieval Section Not for loan 2021-2021783
Total holds: 0

Social media has become a slogan in emotion and sentiment analysis. In today’s era Social media networking sites are almost used by everyone. Social media users share their feelings, thoughts, and experiences with other people by short messages. Short messages are composed of emoticons, slangs, noises, irrelevancies and words. Thus, preprocessing becomes the challenging task for Sentiment analysis. This experiment is performed to evaluate the impact of pre-processing on social data for sentiment classification particularly for slang words. This paper focused on identification of important slang words and to evaluate their impact on sentiment analysis of social media posts. The proposed scheme collects bigrams, trigrams of slang and exploits different features for better results of sentiment classification. N-grams are used for bindings and conditional random fields (CRF) to determine the importance of slang words. Experiments declare that this proposed scheme increases the accuracy of Sentiment analysis.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.