Local cover image
Local cover image
Image from Google Jackets

Advanced image processing algorithms for categorizing and evaluating plant diseases: a study

By: Contributor(s): Publication details: Hyderabad IUP Publications 2022Edition: Vol14(1), FebDescription: 35-49pSubject(s): Online resources: In: IUP Journal of telecommunicationsSummary: The paper studies the approaches to detecting, evaluating and categorizing plant diseases from digital images in the visible spectrum using appropriate processing techniques. Despite the fact that disease symptoms might appear anywhere on the plant, only approaches that looked at obvious symptoms in leaves and stems were examined. This was designed for various reasons: to keep the report short and because methods dealing with roots, seeds, and fruits have some unique characteristics that would necessitate a separate survey. The concepts chosen are organized into three categories based on their goal: detection, severity quantification and categorization. Each classification is further categorized based on the algorithm's primary technical solution. The paper also examines and contrasts the benefits and drawbacks of different prospective strategies. Image acquisition, image preprocessing, feature extraction and neural network-based categorization are a few of the techniques included. Researchers working on both vegetable pathology and pattern recognition can benefit from this study, which provides a detailed and accessible summary of this vital field of research.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Engineering & Technology Archieval Section Not for loan 2022-1560
Total holds: 0

The paper studies the approaches to detecting, evaluating and categorizing plant diseases from digital images in the visible spectrum using appropriate processing techniques. Despite the fact that disease symptoms might appear anywhere on the plant, only approaches that looked at obvious symptoms in leaves and stems were examined. This was designed for various reasons: to keep the report short and because methods dealing with roots, seeds, and fruits have some unique characteristics that would necessitate a separate survey. The concepts chosen are organized into three categories based on their goal: detection, severity quantification and categorization. Each classification is further categorized based on the algorithm's primary technical solution. The paper also examines and contrasts the benefits and drawbacks of different prospective strategies. Image acquisition, image preprocessing, feature extraction and neural network-based categorization are a few of the techniques included. Researchers working on both vegetable pathology and pattern recognition can benefit from this study, which provides a detailed and accessible summary of this vital field of research.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.