Local cover image
Local cover image
Image from Google Jackets

Efficientnet for human fer using transfer learning

By: Contributor(s): Publication details: Chennai ICT Academy 2022Edition: Vol.13(1), OctDescription: 2792-2797pSubject(s): Online resources: In: ICTACT Journal on Soft Computing (IJSC)Summary: Automatic facial expression recognition (FER) remained a challenging problem in computer vision. Recognition of human facial expression is difficult for machine learning techniques since there is a variation in emotional expression from person to person. With the advancement in deep learning and the easy availability of digital data, this process has become more accessible. We proposed an efficient facial expression recognition model based EfficientNet as backbone architecture and trained the proposed model using the transfer learning technique. In this work, we have trained the network on publicly available emotion datasets (RAF-DB, FER-2013, CK+). We also used two ways to compare our trained model: inner and cross-data comparisons. In an internal comparison, the model achieved an accuracy of 81.68 % on DFEW and 71.02 % on FER-2013. In a cross- data comparison, the model trained on RAF-DB and tested on CK+ achieved 78.59%, while the model trained on RAF-DB and tested on FER-2013 achieved 56.10% accuracy. Finally, we generated an t-SEN distribution of our model on both datasets to demonstrate the model's inter-class discriminatory power.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Engineering & Technology Archieval Section Not for loan 2023-0516
Total holds: 0

Automatic facial expression recognition (FER) remained a
challenging problem in computer vision. Recognition of human facial
expression is difficult for machine learning techniques since there is a
variation in emotional expression from person to person. With the
advancement in deep learning and the easy availability of digital data,
this process has become more accessible. We proposed an efficient
facial expression recognition model based EfficientNet as backbone
architecture and trained the proposed model using the transfer
learning technique. In this work, we have trained the network on
publicly available emotion datasets (RAF-DB, FER-2013, CK+). We
also used two ways to compare our trained model: inner and cross-data
comparisons. In an internal comparison, the model achieved an
accuracy of 81.68 % on DFEW and 71.02 % on FER-2013. In a cross-
data comparison, the model trained on RAF-DB and tested on CK+
achieved 78.59%, while the model trained on RAF-DB and tested on
FER-2013 achieved 56.10% accuracy. Finally, we generated an t-SEN
distribution of our model on both datasets to demonstrate the model's
inter-class discriminatory power.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.