Local cover image
Local cover image
Image from Google Jackets

An ensemble learning approach to predict employees' preference for E-working in the post-pandemic world

By: Contributor(s): Publication details: Hyderabad IUP Publications 2022Edition: Vol.18(4), DecDescription: 7-24pSubject(s): Online resources: In: IUP journal of information technologySummary: The Covid-19 pandemic has forced a large segment of the global workforce to shift to e-working. The pandemic has convinced many organizations that e-working has benefits for a successful business. As a result, it is critical to identify employees' suggestions and evaluate their motivation to continue the e-working concept in the post-pandemic world. The study was conducted by randomly surveying employees using various Machine Learning algorithms, including Naive Bayes, Decision Tree, Random Forest, Multilayer Perceptron (MLP), Support Vector Machine (SVM) and logistic regression. The ensembling algorithm uses 66% of the percentage split method in the Waikato Environment for Knowledge Analysis (WEKA) tool. Accuracy, precision, recall, f-measure values and error rates were used to compare the results. The ensemble learning algorithm shows the best results with 90% accuracy, making it easier to predict employees' preference for e-working and accordingly take decisions.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Engineering & Technology Archieval Section Not for loan 2023-0996
Total holds: 0

The Covid-19 pandemic has forced a large segment of the global workforce to shift to e-working. The pandemic has convinced many organizations that e-working has benefits for a successful business. As a result, it is critical to identify employees' suggestions and evaluate their motivation to continue the e-working concept in the post-pandemic world. The study was conducted by randomly surveying employees using various Machine Learning algorithms, including Naive Bayes, Decision Tree, Random Forest, Multilayer Perceptron (MLP), Support Vector Machine (SVM) and logistic regression. The ensembling algorithm uses 66% of the percentage split method in the Waikato Environment for Knowledge Analysis (WEKA) tool. Accuracy, precision, recall, f-measure values and error rates were used to compare the results. The ensemble learning algorithm shows the best results with 90% accuracy, making it easier to predict employees' preference for e-working and accordingly take decisions.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.