Local cover image
Local cover image
Image from Google Jackets

Implication of high-volume mineral admixture on mechanical properties and microstructure at steel-concrete interface

By: Contributor(s): Publication details: Mumbai ACC LTD 2023Edition: Vol.97(11), NovDescription: 17-27pSubject(s): Online resources: In: Indian Concrete Journal - ICJSummary: The existence of a non- homogeneous unique zone in concrete along the periphery of steel surface is being referred as steelconcrete interface (SCI). The interface between steel and concrete exhibits a porous zone, with a thickness measuring several micrometers. This porous zone thickness around SCI plays a crucial role in influencing bond strength, durability, and is a significant parameter used in service life prediction models for reinforced concrete structures. The value of porous zone thickness around SCI is being assumed and adopted without any practical studies in service life prediction models as well as in reinforced concrete mesoscale structure modelling. In the present study, porous zone thickness was experimentally measured through obtaining backscattered electron images around SCI. Gray scale-based thresholding technique was employed to ascertain the porous zone thickness (PZT) around SCI. Furthermore, the influence of incorporating ground granulated blast furnace slag (GGBS) in high-volume on the interfacial transition zone (ITZ) between steel reinforcement bars and the surrounding concrete was investigated. It was observed that porous zone thickness around SCI varies in every other point along the periphery of reinforcement bar. The pozzolanic reaction in high volume GGBS concrete resulted in a substantial decrease of porous zone thickness (PZT) and reduced the accumulation of Portlandite around SCI with the progress in curing age. The factors contributing to the enhanced ultimate bond strength of high volume GGBS concrete compared to control concrete are the decrease in the Porous Zone Thickness (PZT) along with the reduced Ca/Si ratio around the SCI.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Engineering & Technology (PG) Archieval Section Not for loan 2023-1774
Total holds: 0

The existence of a non- homogeneous unique zone in concrete along the periphery of steel surface is being referred as steelconcrete interface (SCI). The interface between steel and concrete exhibits a porous zone, with a thickness measuring several micrometers. This porous zone thickness around SCI plays a crucial role in influencing bond strength, durability, and is a significant parameter used in service life prediction models for reinforced concrete structures. The value of porous zone thickness around SCI is being assumed and adopted without any practical studies in service life prediction models as well as in reinforced concrete mesoscale structure modelling. In the present study, porous zone thickness was experimentally measured through obtaining backscattered electron images around SCI. Gray scale-based thresholding technique was employed to ascertain the porous zone thickness (PZT) around SCI. Furthermore, the influence of incorporating ground granulated blast furnace slag (GGBS) in high-volume on the interfacial transition zone (ITZ) between steel reinforcement bars and the surrounding concrete was investigated. It was observed that porous zone thickness around SCI varies in every other point along the periphery of reinforcement bar. The pozzolanic reaction in high volume GGBS concrete resulted in a substantial decrease of porous zone thickness (PZT) and reduced the accumulation of Portlandite around SCI with the progress in curing age. The factors contributing to the enhanced ultimate bond strength of high volume GGBS concrete compared to control concrete are the decrease in the Porous Zone Thickness (PZT) along with the reduced Ca/Si ratio around the SCI.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.