Local cover image
Local cover image
Image from Google Jackets

Comparison of polynomial cam profiles and input shaping for driving flexible systems

By: Contributor(s): Publication details: New York ASME 2012Edition: Vol.134(12), DecDescription: 1-7pSubject(s): Online resources: In: Journal of mechanical designSummary: Polynomial profiles can be used as reference commands to limit induced vibration in flexible systems. Due to their ease of design and low-pass filtering effects, polynomial profiles are often found in cam-follower systems. Polynomial profiles have also been used as smooth reference commands for automated machines. However, despite extensive work to develop and improve such profiles, inherent tradeoffs still exist between induced vibration, rise time, and ease of design. Input shaping is an alternative method for generating motion commands that reduce residual vibration. This paper compares polynomial profiles to input-shaped commands for the application of reducing vibration in flexible systems. Analyses using Laplace transforms reveal that input shapers suppress vibration at regularly spaced frequencies. However, polynomial profiles do not share this property. Simulations and experimental results show that input shaping improves rise time and reduces residual vibration in comparison to polynomial profiles.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Engineering & Technology Archieval Section Not for loan 2024-0771
Total holds: 0

Polynomial profiles can be used as reference commands to limit induced vibration in flexible systems. Due to their ease of design and low-pass filtering effects, polynomial profiles are often found in cam-follower systems. Polynomial profiles have also been used as smooth reference commands for automated machines. However, despite extensive work to develop and improve such profiles, inherent tradeoffs still exist between induced vibration, rise time, and ease of design. Input shaping is an alternative method for generating motion commands that reduce residual vibration. This paper compares polynomial profiles to input-shaped commands for the application of reducing vibration in flexible systems. Analyses using Laplace transforms reveal that input shapers suppress vibration at regularly spaced frequencies. However, polynomial profiles do not share this property. Simulations and experimental results show that input shaping improves rise time and reduces residual vibration in comparison to polynomial profiles.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.