Local cover image
Local cover image
Image from Google Jackets

Study on regression based machine learning models to predict the student performance

By: Contributor(s): Publication details: Sangli K.E. Society's Rajarambapu Institute of Technology 2024Edition: Vol.38(2), OctDescription: 177-186pSubject(s): Online resources: In: Journal of engineering education transformations (JEET)Summary: This article discusses the use of three regression models (Linear Regression, Decision Tree Regression, and Random Forest Regression) to study the performance of high school students in India across three subjects: Physics, Chemistry, and Mathematics. The study identifies various factors that affect student performance, such as access to good internet connectivity, parental educational background, and lunch quality. The data was obtained from an educational firm and analyzed based on principles and methods that aid decision-making processes. The results showed that all three regression models produced accurate and plausible results, with an overall accuracy of approximately 95%. The study's primary objective was to provide a clear and concise comparative analysis of various Machine Learning techniques and their impact on the dataset and the predictive attributes analyzed. The findings from this study underscore the importance of considering various factors when analyzing student performance and highlight the effectiveness of Machine Learning techniques in this domain.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Engineering & Technology Archieval Section Not for loan 2025-0002
Total holds: 0

This article discusses the use of three regression models (Linear Regression, Decision Tree Regression, and Random Forest Regression) to study the performance of high school students in India across three subjects: Physics, Chemistry, and Mathematics. The study identifies various factors that affect student performance, such as access to good internet connectivity, parental educational background, and lunch quality. The data was obtained from an educational firm and analyzed based on principles and methods that aid decision-making processes. The results showed that all three regression models produced accurate and plausible results, with an overall accuracy of approximately 95%. The study's primary objective was to provide a clear and concise comparative analysis of various Machine Learning techniques and their impact on the dataset and the predictive attributes analyzed. The findings from this study underscore the importance of considering various factors when analyzing student performance and highlight the effectiveness of Machine Learning techniques in this domain.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.