Local cover image
Local cover image
Image from Google Jackets

Nonlinear analysis of building structures resting on soft soil considering soil–structure interaction and structure–soil–structure interaction

By: Contributor(s): Publication details: Mumbai Springer 2024Edition: Vol.105(2), JunDescription: 475-485pSubject(s): Online resources: In: Journal of the institution of engineers (India): Series ASummary: Over the decades, various researchers have suggested that considering a structure fixed at the base predicts erroneous results in estimating the seismic response of soil–structure systems due to earthquake motions, potentially leading to faulty system designs. The magnitude of these errors may be attributed to variables such as soil type and modeling techniques. Improper modeling techniques are major factors contributing to erroneous responses of soil–structure systems. Selecting and implementing wave-transmitting boundaries are challenging tasks in finite element modeling techniques to simulate the infinite extent of soil and account for radiation damping in soil for solving soil–structure interaction (SSI) problems. This paper studies the effects of SSI and soil–structure–soil interaction (SSSI) on a four-storey steel structure with a raft foundation resting on soft semi-infinite soil. Here, the infinite domain of soil is simulated through an infinite element as a boundary condition after validating the modeling technique with experimental results found in the literature. The new modeling method, using ABAQUS, effectively handles soil–structure interaction (SSI) problems with acceptable accuracy, facilitating simulation of both SSI and SSSI scenarios for a four-storey steel structure. Using an infinite element (CIN3D8) in finite element method (FEM) analysis proves viable for SSI and SSSI simulations. Results show reduced storey drifts but varied floor shear forces across soil types (S1: a uniform soil system and S2: a two-layer soil system) compared to fixed base conditions. In SSSI analysis, higher storey levels experience increased drifts, while lower levels have decreased drifts compared to SSI scenarios. Base shear forces are consistently higher in SSSI analysis across all soil profiles, resulting in overall higher total floor displacements in both SSI and SSSI conditions compared to fixed base conditions.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Engineering & Technology (PG) Archieval Section Not for loan 2025-0058
Total holds: 0

Over the decades, various researchers have suggested that considering a structure fixed at the base predicts erroneous results in estimating the seismic response of soil–structure systems due to earthquake motions, potentially leading to faulty system designs. The magnitude of these errors may be attributed to variables such as soil type and modeling techniques. Improper modeling techniques are major factors contributing to erroneous responses of soil–structure systems. Selecting and implementing wave-transmitting boundaries are challenging tasks in finite element modeling techniques to simulate the infinite extent of soil and account for radiation damping in soil for solving soil–structure interaction (SSI) problems. This paper studies the effects of SSI and soil–structure–soil interaction (SSSI) on a four-storey steel structure with a raft foundation resting on soft semi-infinite soil. Here, the infinite domain of soil is simulated through an infinite element as a boundary condition after validating the modeling technique with experimental results found in the literature. The new modeling method, using ABAQUS, effectively handles soil–structure interaction (SSI) problems with acceptable accuracy, facilitating simulation of both SSI and SSSI scenarios for a four-storey steel structure. Using an infinite element (CIN3D8) in finite element method (FEM) analysis proves viable for SSI and SSSI simulations. Results show reduced storey drifts but varied floor shear forces across soil types (S1: a uniform soil system and S2: a two-layer soil system) compared to fixed base conditions. In SSSI analysis, higher storey levels experience increased drifts, while lower levels have decreased drifts compared to SSI scenarios. Base shear forces are consistently higher in SSSI analysis across all soil profiles, resulting in overall higher total floor displacements in both SSI and SSSI conditions compared to fixed base conditions.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.