Local cover image
Local cover image
Image from Google Jackets

Deep learning-based bitcoin price prediction using long short-term memory networks

By: Contributor(s): Publication details: Ghaziabad MAT Journals 2024Edition: Vol.10(2), May-AugDescription: 1-8pSubject(s): Online resources: In: Journal of computer science engineering and software testingSummary: Cryptocurrencies, notably Bitcoin, have surged in popularity and importance, attracting widespread attention due to their volatile nature and potential for significant financial gains. Predicting Bitcoin prices accurately has emerged as a challenging yet indispensable task for investors, traders, and policymakers seeking to navigate the complexities of the cryptocurrency market. Traditional forecasting methods often struggle to capture the intricate temporal patterns inherent in this domain, prompting the exploration of advanced techniques such as deep learning. This paper presents a comprehensive study on employing Long Short-Term Memory (LSTM) networks for Bitcoin price prediction, a variant of Recurrent Neural Networks (RNNs). Our research encompasses the entire process, from data collection to model evaluation, focusing on addressing the unique challenges posed by cryptocurrency market data. We begin by discussing the methodology involved in data acquisition, preprocessing, and feature engineering, which are crucial steps for ensuring the quality and relevance of input data.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Engineering & Technology Archieval Section Not for loan 2025-0798
Total holds: 0

Cryptocurrencies, notably Bitcoin, have surged in popularity and importance, attracting widespread attention due to their volatile nature and potential for significant financial gains. Predicting Bitcoin prices accurately has emerged as a challenging yet indispensable task for investors, traders, and policymakers seeking to navigate the complexities of the cryptocurrency market. Traditional forecasting methods often struggle to capture the intricate temporal patterns inherent in this domain, prompting the exploration of advanced techniques such as deep learning. This paper presents a comprehensive study on employing Long Short-Term Memory (LSTM) networks for Bitcoin price prediction, a variant of Recurrent Neural Networks (RNNs). Our research encompasses the entire process, from data collection to model evaluation, focusing on addressing the unique challenges posed by cryptocurrency market data. We begin by discussing the methodology involved in data acquisition, preprocessing, and feature engineering, which are crucial steps for ensuring the quality and relevance of input data.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.