Local cover image
Local cover image
Image from Google Jackets

LPG-powered pyrolysis reactor for production of biofuel from plastic waste

By: Contributor(s): Publication details: Hyderabad IUP Publications 2024Edition: Vol.17(2), MayDescription: 7-17pSubject(s): Online resources: In: IUP journal of mechanical engineeringSummary: The increasing amount of plastic waste generated globally has led to a growing demand for efficient and sustainable methods of disposal. Pyrolysis has emerged as a promising technology for converting plastic waste into fuel. This project has designed and fabricated a pyrolysis reactor to convert plastic waste into fuel oil. The reactor was designed to operate at a temperature range of 250-450 C with a residence time of 30-90 min. The reactor was fabricated using high-quality galvanized steel for the inner chamber and mild steel for the outer chamber to withstand the high temperatures and corrosive environment. The reactor was also equipped with a Liquified Petroleum Gas (LPG) heating system, three condensers, and a collection system to recover the produced fuel. The heating system was designed to provide uniform heating across the reactor to ensure efficient pyrolysis. The performance of the reactor was evaluated by pyrolyzing LPDE type plastic waste; the parameters of pyrolysis reactors like temperature, mass of yield and time of yield were determined. The reactor’s high efficiency, low cost, and eco-friendliness make it a promising solution for managing plastic waste, while also providing an alternative source of fuel.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Engineering & Technology Archieval Section Not for loan 2025-1067
Total holds: 0

The increasing amount of plastic waste generated globally has led to a growing demand for efficient and sustainable methods of disposal. Pyrolysis has emerged as a promising technology for converting plastic waste into fuel. This project has designed and fabricated a pyrolysis reactor to convert plastic waste into fuel oil. The reactor was designed to operate at a temperature range of 250-450 C with a residence time of 30-90 min. The reactor was fabricated using high-quality galvanized steel for the inner chamber and mild steel for the outer chamber to withstand the high temperatures and corrosive environment. The reactor was also equipped with a Liquified Petroleum Gas (LPG) heating system, three condensers, and a collection system to recover the produced fuel. The heating system was designed to provide uniform heating across the reactor to ensure efficient pyrolysis. The performance of the reactor was evaluated by pyrolyzing LPDE type plastic waste; the parameters of pyrolysis reactors like temperature, mass of yield and time of yield were determined. The reactor’s high efficiency, low cost, and eco-friendliness make it a promising solution for managing plastic waste, while also providing an alternative source of fuel.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.