Local cover image
Local cover image
Image from Google Jackets

Bioremediation of sanitary napkin by cellulose-degrading bacteria

By: Contributor(s): Publication details: Bhopal Innovare Academic Sciences Pvt Ltd 2024Edition: Vol.16(8)Description: 27-31pSubject(s): Online resources: In: International journal of pharmacy and pharmaceutical scienceSummary: Objective: This research aims to isolate cellulase-producing microbes from ruminants and investigate their potential for bioremediation of organic wastes, like sanitary napkins. Organic waste management is a critical environmental challenge, and bioremediation offers a sustainable approach for waste treatment. Ruminant animals possess a unique microbial population in their digestive systems that can efficiently degrade cellulose, a major component of sanitary napkins. Methods: In this study, samples of garden soil, cow dung, buffalo dung, and dumping yard soil were collected and screened for cellulase-producing microbes using Carboxy Methyl Cellulose (CMC) agar medium. Subsequently, the cellulase-producing microbes were employed in the whattman filter paper degradation and their capacity to degrade the cellulose in it by performing a DNSA assay. Furthermore, these isolates were employed in the bioremediation process to degrade sanitary napkins. Thereafter, we prepared various consortia of the isolates to check if it led to better degradation of sanitary napkins. Results: The results demonstrated the successful isolation of cellulase-producing microbes from all the samples using CMC agar medium and were labeled as Isolates 1, 2, 3, 4, G, and D. In the filter paper degradation assay, isolate 3 produced the highest amount of reducing sugar from 0.1 g of cellulose, followed by isolate G, indicating the highest cellulase or FPase activity among all isolates. Additionally, these isolates exhibited promising potential for the degradation of sanitary napkins. Tube with isolate 3 had the highest concentration of reducing sugar and the lowest dry weight of sanitary napkin, followed by isolate G. Isolates 3 and G showed promising results as compared to the other isolates, but isolated 3 had an antagonistic effect when it was used with other isolates in the consortium. In contrast, isolate G showed synergistic effects in the consortium, and G+D showed the highest degradation of sanitary napkins. Conclusion: This research contributes a microbial-based bioremediation approach to the development of sustainable and environmentally friendly strategies for waste management.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Pharmacy Archieval Section Not for loan 2025-1365
Total holds: 0

Objective: This research aims to isolate cellulase-producing microbes from ruminants and investigate their potential for bioremediation of organic wastes, like sanitary napkins. Organic waste management is a critical environmental challenge, and bioremediation offers a sustainable approach for waste treatment. Ruminant animals possess a unique microbial population in their digestive systems that can efficiently degrade cellulose, a major component of sanitary napkins.

Methods: In this study, samples of garden soil, cow dung, buffalo dung, and dumping yard soil were collected and screened for cellulase-producing microbes using Carboxy Methyl Cellulose (CMC) agar medium. Subsequently, the cellulase-producing microbes were employed in the whattman filter paper degradation and their capacity to degrade the cellulose in it by performing a DNSA assay. Furthermore, these isolates were employed in the bioremediation process to degrade sanitary napkins. Thereafter, we prepared various consortia of the isolates to check if it led to better degradation of sanitary napkins.

Results: The results demonstrated the successful isolation of cellulase-producing microbes from all the samples using CMC agar medium and were labeled as Isolates 1, 2, 3, 4, G, and D. In the filter paper degradation assay, isolate 3 produced the highest amount of reducing sugar from 0.1 g of cellulose, followed by isolate G, indicating the highest cellulase or FPase activity among all isolates. Additionally, these isolates exhibited promising potential for the degradation of sanitary napkins. Tube with isolate 3 had the highest concentration of reducing sugar and the lowest dry weight of sanitary napkin, followed by isolate G. Isolates 3 and G showed promising results as compared to the other isolates, but isolated 3 had an antagonistic effect when it was used with other isolates in the consortium. In contrast, isolate G showed synergistic effects in the consortium, and G+D showed the highest degradation of sanitary napkins.

Conclusion: This research contributes a microbial-based bioremediation approach to the development of sustainable and environmentally friendly strategies for waste management.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.