Local cover image
Local cover image
Image from Google Jackets

Stability-indicating RP-HPLC method development and validation for the analysis of doxepin hydrochloride in bulk and pharmaceutical dosage form

By: Publication details: Bhopal Innovare Academic Sciences Pvt Ltd 2024Edition: Vol.16(4)Description: 27-35pSubject(s): Online resources: In: International journal of pharmacy and pharmaceutical scienceSummary: Objective: A simple, reliable, and rapid RP-HPLC method showing stability has been established to detect Doxepin Hydrochloride (DOX) with its degraded products. The proposed method has been validated for specificity, linearity, system suitability, accuracy, precision, robustness, LOD, and LOQ as per ICH guidelines. All parameters were found to be within the accepted limits, affirming the method's reliability. Methods: Analysis was conducted using RP-HPLC on a Phenomenex C18 Luna column (250 mm × 4.6 mm id, 5 µm) with a mobile phase comprising methanol, acetonitrile, and buffer (40:30:30, v/v/v) and a flow rate of 0.5 ml/min. The detection was performed with a UV detector set at 254 nm. Diverse methods have been employed to investigate forced degradation studies, including acid-base hydrolysis, photolysis, thermal degradation, and oxidation. These studies were conducted both in bulk and in capsule formulations of DOX. Results: The retention time (tR) of DOX was 2.92 minutes, and all parameters met acceptable limit values. The response exhibited linearity over a concentration range of 10 to 50 µg/ml (R2 = 0.9974). The percentage of DOX recovered from the pharmaceutical cream dosage form ranged from 97.67% to 101%. Sensitivity levels for the developed method were indicated by limit of detection (LOD) and limit of quantification (LOQ) values of 0.40–0.50 µg/ml. The proposed method was validated according to ICH guidelines. Conclusion: Hence, a simple, reliable, accurate, and precise HPLC method was developed, proving suitable for the analysis of DOX in both bulk and commercial formulations.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Pharmacy Archieval Section Not for loan 2025-1458
Total holds: 0

Objective: A simple, reliable, and rapid RP-HPLC method showing stability has been established to detect Doxepin Hydrochloride (DOX) with its degraded products. The proposed method has been validated for specificity, linearity, system suitability, accuracy, precision, robustness, LOD, and LOQ as per ICH guidelines. All parameters were found to be within the accepted limits, affirming the method's reliability.

Methods: Analysis was conducted using RP-HPLC on a Phenomenex C18 Luna column (250 mm × 4.6 mm id, 5 µm) with a mobile phase comprising methanol, acetonitrile, and buffer (40:30:30, v/v/v) and a flow rate of 0.5 ml/min. The detection was performed with a UV detector set at 254 nm. Diverse methods have been employed to investigate forced degradation studies, including acid-base hydrolysis, photolysis, thermal degradation, and oxidation. These studies were conducted both in bulk and in capsule formulations of DOX.

Results: The retention time (tR) of DOX was 2.92 minutes, and all parameters met acceptable limit values. The response exhibited linearity over a concentration range of 10 to 50 µg/ml (R2 = 0.9974). The percentage of DOX recovered from the pharmaceutical cream dosage form ranged from 97.67% to 101%. Sensitivity levels for the developed method were indicated by limit of detection (LOD) and limit of quantification (LOQ) values of 0.40–0.50 µg/ml. The proposed method was validated according to ICH guidelines.

Conclusion: Hence, a simple, reliable, accurate, and precise HPLC method was developed, proving suitable for the analysis of DOX in both bulk and commercial formulations.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.