Local cover image
Local cover image
Image from Google Jackets

Imputing Missing Data Analysis in Web Service Quality Dataset for Improving QoS Prediction

By: Contributor(s): Publication details: New Delhi STM Journals 2019Edition: Vol.6(2), May-AugDescription: 8-22pSubject(s): Online resources: In: Recent trends in programming languagesSummary: The web services at present have countless options for similar tasks. This wide range in web services induce challenge to choose the best service among all available. QoS prediction is a key of the selection but it is very time-consuming affair. Any prediction strategy relies on accuracy and completeness of available data, especially in case of QOS Prediction. Feedback, throughput and response time are the major attribute that should not be missed and incorrect. So, it's important to identify the missing value in the web service datasets. Therefore, a study of three missing value prediction approaches was undertaken to investigate their performance for missing values in datasets for web service. Benchmarked WS Dream dataset include response time and throughput matrices of web services is selected to analyze the performance of selected approaches. An extensive experiment is performed, and results are collected, which conclude the superiority of MICE approach over other approaches.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Engineering & Technology Archieval Section Not for loan 2020074
Total holds: 0

The web services at present have countless options for similar tasks. This wide range in web services induce challenge to choose the best service among all available. QoS prediction is a key of the selection but it is very time-consuming affair. Any prediction strategy relies on accuracy and completeness of available data, especially in case of QOS Prediction. Feedback, throughput and response time are the major attribute that should not be missed and incorrect. So, it's important to identify the missing value in the web service datasets. Therefore, a study of three missing value prediction approaches was undertaken to investigate their performance for missing values in datasets for web service. Benchmarked WS Dream dataset include response time and throughput matrices of web services is selected to analyze the performance of selected approaches. An extensive experiment is performed, and results are collected, which conclude the superiority of MICE approach over other approaches.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.