Local cover image
Local cover image
Image from Google Jackets

Semantic Summarizer

By: Contributor(s): Publication details: New Delhi STM Journals 2019Edition: Vol.6(3), Sep-DecDescription: 1-8pSubject(s): Online resources: In: Journal of artificial intelligence research and advances (JoAIRA)Summary: Abstract: This work presents the survey of the existing approaches used for automatic text summarization. Automatic text summarization technique belongs to the natural language processing area, and is applied on the source document to produce its compact version that preserves its aggregate meaning and key concepts. On a broader scale, approaches for text summarization task are classified into two categories: (1) abstractive and (1) extractive. In abstractive summarization, main contents of the input text are paraphrased possibly using vocabulary that is not present in the source document, while as in extractive summarization, output summary is a subset of the input text and is generated by using sentence ranking technique. In this paper, the main ideas behind the existing methods used for abstractive and extractive summarization are discussed broadly. Comparative study on these methods is also highlighted.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Engineering & Technology Archieval Section Not for loan 2021120
Total holds: 0

Abstract: This work presents the survey of the existing approaches used for automatic text summarization. Automatic text summarization technique belongs to the natural language processing area, and is applied on the source document to produce its compact version that preserves its aggregate meaning and key concepts. On a broader scale, approaches for text summarization task are classified into two categories: (1) abstractive and (1) extractive. In abstractive summarization, main contents of the input text are paraphrased possibly using vocabulary that is not present in the source document, while as in extractive summarization, output summary is a subset of the input text and is generated by using sentence ranking technique. In this paper, the main ideas behind the existing methods used for abstractive and extractive summarization are discussed broadly. Comparative study on these methods is also highlighted.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.