Local cover image
Local cover image
Image from Google Jackets

Offline Handwritten Signatures Based Multifactor Authentication in Cloud Computing using Deep CNN Model

By: Contributor(s): Publication details: Tamil Nadu i-manager's 2019Edition: Vol.6(22), Jul-DecDescription: 13-25pSubject(s): Online resources: In: i-manager's journal on cloud computing (JCC)Summary: Cloud Security is an important factor that influences the adoption of cloud applications into bank domains. Many researchers proposed secure authentication mechanisms based on the traditional factors, biometric factors, captcha and certificates etc. This paper proposes a biometric handwritten signature recognition using Deep Convolution Neural Networks (DCNN). The proposed model uses signature as a biometric factor to verify the authenticity of the users along with traditional credentials. The extraction of the features are performed using DeepCNN model in the registration and verification process. The practical setup is done through NIVIDIA DGX environment using Python keras and tensor flow as backend. An experimental result shows 99% of accuracy and validation accuracy.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Engineering & Technology Archieval Section Not for loan 2021-2021190
Total holds: 0

Cloud Security is an important factor that influences the adoption of cloud applications into bank domains. Many researchers proposed secure authentication mechanisms based on the traditional factors, biometric factors, captcha and certificates etc. This paper proposes a biometric handwritten signature recognition using Deep Convolution Neural Networks (DCNN). The proposed model uses signature as a biometric factor to verify the authenticity of the users along with traditional credentials. The extraction of the features are performed using DeepCNN model in the registration and verification process. The practical setup is done through NIVIDIA DGX environment using Python keras and tensor flow as backend. An experimental result shows 99% of accuracy and validation accuracy.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.