Local cover image
Local cover image
Image from Google Jackets

Novel Strategy for Weight Initialization in Sigmoidal Feed-forward Artificial Neural Networks

By: Publication details: New Delhi STM Journals 2018Edition: Vol 5 (1), Jan- AprDescription: 62-75pSubject(s): Online resources: In: Journal of artificial intelligence research and advances (JoAIRA)Summary: paper, a novel method of weight initialization is proposed. The proposed method of weight initialization distributes the initial weights and thresholds in such a manner that they lie in different regions of the activation function used at the hidden layer. The proposed method is compared with six other popular weight initialization methods on ten function approximation problems using the RPROP (Resilient Back-propagation) and Levenberg-Marquardt algorithms for training. Two types of activation functions viz. tan hyperbolic and logarithmic sigmoidal functions are used for analysis and comparison.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Engineering & Technology Archieval Section Not for loan 2021-2021444
Total holds: 0

paper, a novel method of weight initialization is proposed. The proposed method of weight initialization distributes the initial weights and thresholds in such a manner that they lie in different regions of the activation function used at the hidden layer. The proposed method is compared with six other popular weight initialization methods on ten function approximation problems using the RPROP (Resilient Back-propagation) and Levenberg-Marquardt algorithms for training. Two types of activation functions viz. tan hyperbolic and logarithmic sigmoidal functions are used for analysis and comparison.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.