Local cover image
Local cover image
Image from Google Jackets

Test Effort Estimation Based Upon Neural Fuzzy Model

By: Contributor(s): Publication details: New Delhi STM Journals 2019Edition: Vol 6 (1), Jan-ApriDescription: 76-85pSubject(s): Online resources: In: Journal of artificial intelligence research and advances (JoAIRA)Summary: Estimating test development effort is an important task in the management of large software projects. The task is challenging and it has been receiving the attentions of researchers ever since software was developed for commercial purpose. A number of estimation models exist for effort prediction. However, there is a need for neural model to obtain more accurate estimations. The primary purpose of this study is to propose a precise method of estimation by selecting the most popular models in order to improve accuracy. In this paper, we explore the use of soft computing techniques to build a suitable model structure to utilize improved estimation of software effort; a comparison between neural network (NN) and neural fuzzy model; and the evaluation criteria are based upon MRE and MMRE. Consequently, the final results are very precise and reliable when they are applied to a real dataset in a software project. The results show that NF is effective in effort estimation.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Engineering & Technology Archieval Section Not for loan 2021-2021470
Total holds: 0

Estimating test development effort is an important task in the management of large software projects. The task is challenging and it has been receiving the attentions of researchers ever since software was developed for commercial purpose. A number of estimation models exist for effort prediction. However, there is a need for neural model to obtain more accurate estimations. The primary purpose of this study is to propose a precise method of estimation by selecting the most popular models in order to improve accuracy. In this paper, we explore the use of soft computing techniques to build a suitable model structure to utilize improved estimation of software effort; a comparison between neural network (NN) and neural fuzzy model; and the evaluation criteria are based upon MRE and MMRE. Consequently, the final results are very precise and reliable when they are applied to a real dataset in a software project. The results show that NF is effective in effort estimation.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.