Local cover image
Local cover image
Image from Google Jackets

Entropy based greedy unsupervised feature selection method using rough set theory for classification

By: Contributor(s): Publication details: Chennai ICT Academy 2022Edition: Vol.13(1), OctDescription: 2741-2749pSubject(s): Online resources: In: ICTACT Journal on Soft Computing (IJSC)Summary: Feature selection technique attempts to select and remove irrelevant features while ensuring that an informative subset of features remains in the dataset. The performance of a classifier often depends on the feature subset used for the robust classification task. In the medical and healthcare application domain, classification accuracy plays a vital role. The higher level of false negatives in medical diagnosis systems may raise the risk of patients not employing the necessary treatment they need. In this article, we have proposed an unsupervised feature selection method that underlines the concepts of rough set theory for the task of classification of high-dimensional datasets. Experiments are carried out on seven public domain healthcare and life science related datasets. The obtained experimental results justify the significance of the proposed method over five other state-of-the-art feature selection methods.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Engineering & Technology Archieval Section Not for loan 2023-0510
Total holds: 0

Feature selection technique attempts to select and remove irrelevant
features while ensuring that an informative subset of features remains
in the dataset. The performance of a classifier often depends on the
feature subset used for the robust classification task. In the medical and
healthcare application domain, classification accuracy plays a vital
role. The higher level of false negatives in medical diagnosis systems
may raise the risk of patients not employing the necessary treatment
they need. In this article, we have proposed an unsupervised feature
selection method that underlines the concepts of rough set theory for
the task of classification of high-dimensional datasets. Experiments are
carried out on seven public domain healthcare and life science related
datasets. The obtained experimental results justify the significance of
the proposed method over five other state-of-the-art feature selection
methods.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.