Local cover image
Local cover image
Image from Google Jackets

Nephroprotective potential of syringic acid in experimental diabetic nephropathy: Focus on oxidative stress and autophagy

By: Contributor(s): Publication details: Mumbai Wolter Kluwer 2022Edition: Vol.55(1), Jan-FebDescription: 34-42pSubject(s): Online resources: In: Indian Journal of PharmacologySummary: Diabetic nephropathy (DN) is a chronic hyperglycemic manifestation of microvascular damage in the kidneys. Widespread research in this area suggests the involvement of perturbed redox homeostasis and autophagy in renal cells phrase- promote the progression of DN. MATERIALS AND METHODS: Reframed sentences-The present study investigates the pharmacological effect of Syringic acid (SYA), in streptozotocin (STZ, 55 mg/kg, i.p) induced diabetic nephropathy model and in high glucose (30 mM) challenged rat renal epithelial cells (NRK 52E) cells with a focus on oxidative stress and autophagy mechanisms. RESULTS: Both in vivo and in vitro experimental data revealed elevated oxidative stress markers along with compromised levels of nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal cellular redox-regulated transcription factor in renal cells upon glycemic stress. Elevated blood glucose also reduced the autophagy process as indicated by low expression of light chain (LC) 3-IIB in diabetic kidney and in NRK 52E cells subjected to excess glucose. SYA (25 and 50 mg/kg, p.o.) administration for 4 weeks to diabetic rats, Reframed sentence-preserved the renal function as evidenced by reduced serum creatinine levels as well as improved urine creatinine and urea levles as compared to non treated diabetic animals. At the molecular level, SYA improved renal expression of Nrf2 and autophagy-related proteins (Atg5, Atg3, and Atg7) in diabetic rats. Similarly, SYA (10 and 20 μM) co-treatment in high glucose-treated NRK 52E cells displayed increased levels of Nrf2 and autophagy induction. CONCLUSION: Results from this study signify the renoprotective effect of SYA and highlight the modulation of oxidative stress and autophagy mechanisms to mitigate diabetic kidney disease. Keywords: Antioxidant enzymes, autophagy, diabetic nephropathy, oxidative stress, syringic acid
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Pharmacy Archieval Section Not for loan 2023-1153
Total holds: 0

Diabetic nephropathy (DN) is a chronic hyperglycemic manifestation of microvascular damage in the kidneys. Widespread research in this area suggests the involvement of perturbed redox homeostasis and autophagy in renal cells phrase- promote the progression of DN.
MATERIALS AND METHODS:

Reframed sentences-The present study investigates the pharmacological effect of Syringic acid (SYA), in streptozotocin (STZ, 55 mg/kg, i.p) induced diabetic nephropathy model and in high glucose (30 mM) challenged rat renal epithelial cells (NRK 52E) cells with a focus on oxidative stress and autophagy mechanisms.
RESULTS:

Both in vivo and in vitro experimental data revealed elevated oxidative stress markers along with compromised levels of nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal cellular redox-regulated transcription factor in renal cells upon glycemic stress. Elevated blood glucose also reduced the autophagy process as indicated by low expression of light chain (LC) 3-IIB in diabetic kidney and in NRK 52E cells subjected to excess glucose. SYA (25 and 50 mg/kg, p.o.) administration for 4 weeks to diabetic rats, Reframed sentence-preserved the renal function as evidenced by reduced serum creatinine levels as well as improved urine creatinine and urea levles as compared to non treated diabetic animals. At the molecular level, SYA improved renal expression of Nrf2 and autophagy-related proteins (Atg5, Atg3, and Atg7) in diabetic rats. Similarly, SYA (10 and 20 μM) co-treatment in high glucose-treated NRK 52E cells displayed increased levels of Nrf2 and autophagy induction.
CONCLUSION:

Results from this study signify the renoprotective effect of SYA and highlight the modulation of oxidative stress and autophagy mechanisms to mitigate diabetic kidney disease.
Keywords: Antioxidant enzymes, autophagy, diabetic nephropathy, oxidative stress, syringic acid

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.