Local cover image
Local cover image
Image from Google Jackets

Drug repurposing a compelling cancer strategy with bottomless opportunities: Recent advancements in computational methods and molecular mechanisms

By: Contributor(s): Publication details: Mumbai Wolter Kluwer 2023Edition: Vol.55(5), Sep-OctDescription: 322-331pSubject(s): Online resources: In: Indian Journal of PharmacologySummary: Drug discovery has customarily focused on a de novo design approach, which is extremely expensive and takes several years to evolve before reaching the market. Discovering novel therapeutic benefits for the current drugs could contribute to new treatment alternatives for individuals with complex medical demands that are safe, inexpensive, and timely. In this consequence, when pharmaceutically yield and oncology drug efficacy appear to have hit a stalemate, drug repurposing is a fascinating method for improving cancer treatment. This review gathered about how in silico drug repurposing offers the opportunity to quickly increase the anticancer drug arsenal and, more importantly, overcome some of the limits of existing cancer therapies against both old and new therapeutic targets in oncology. The ancient nononcology compounds' innovative potential targets and important signaling pathways in cancer therapy are also discussed. This review also includes many plant-derived chemical compounds that have shown potential anticancer properties in recent years. Here, we have also tried to bring the spotlight on the new mechanisms to support clinical research, which may become increasingly essential in the future; at the same time, the unsolved or failed clinical trial study should be reinvestigated further based on the techniques and information provided. These encouraging findings, combined together, will through new insight on repurposing more non-oncology drugs for the treatment of cancer.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Pharmacy Archieval Section Not for loan 2024-0082
Total holds: 0

Drug discovery has customarily focused on a de novo design approach, which is extremely expensive and takes several years to evolve before reaching the market. Discovering novel therapeutic benefits for the current drugs could contribute to new treatment alternatives for individuals with complex medical demands that are safe, inexpensive, and timely. In this consequence, when pharmaceutically yield and oncology drug efficacy appear to have hit a stalemate, drug repurposing is a fascinating method for improving cancer treatment. This review gathered about how in silico drug repurposing offers the opportunity to quickly increase the anticancer drug arsenal and, more importantly, overcome some of the limits of existing cancer therapies against both old and new therapeutic targets in oncology. The ancient nononcology compounds' innovative potential targets and important signaling pathways in cancer therapy are also discussed. This review also includes many plant-derived chemical compounds that have shown potential anticancer properties in recent years. Here, we have also tried to bring the spotlight on the new mechanisms to support clinical research, which may become increasingly essential in the future; at the same time, the unsolved or failed clinical trial study should be reinvestigated further based on the techniques and information provided. These encouraging findings, combined together, will through new insight on repurposing more non-oncology drugs for the treatment of cancer.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.