Local cover image
Local cover image
Image from Google Jackets

Applying AI and ML techniques for customer churn prediction in the telecom industry : a data-driven decision-making approach

By: Contributor(s): Publication details: Hyderabad IUP Publications 2024Edition: Vol.16(4), NovDescription: 7-19pSubject(s): Online resources: In: IUP Journal of telecommunicationsSummary: The paper delves into the application of artificial intelligence (AI) and machine learning (ML) techniques to predict customer attrition rates and promote data-driven decision making in the telecommunications industry. Using a comprehensive dataset encompassing customer demographics, usage behavior, subscription details, billing information, customer interactions, and historical churn records, the paper proposes a holistic approach to churn prediction. The implementation of cutting-edge AI and ML algorithms enables to meticulously analyze and model this dataset, and develop predictive models that can accurately identify probable churners. The findings illustrate the manner in which AI and ML have revolutionized telecommunications industry, not just in terms of predicting client churn but also in fostering a culture of data-driven decision making. Telecommunications companies can employ these technologies to proactively manage customer attrition, optimize promotional strategies, and elevate overall service quality, ultimately ensuring customer loyalty and achieving sustainable growth in a highly competitive market.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Engineering & Technology Archieval Section Not for loan 2025-1296
Total holds: 0

The paper delves into the application of artificial intelligence (AI) and machine learning (ML) techniques to predict customer attrition rates and promote data-driven decision making in the telecommunications industry. Using a comprehensive dataset encompassing customer demographics, usage behavior, subscription details, billing information, customer interactions, and historical churn records, the paper proposes a holistic approach to churn prediction. The implementation of cutting-edge AI and ML algorithms enables to meticulously analyze and model this dataset, and develop predictive models that can accurately identify probable churners. The findings illustrate the manner in which AI and ML have revolutionized telecommunications industry, not just in terms of predicting client churn but also in fostering a culture of data-driven decision making. Telecommunications companies can employ these technologies to proactively manage customer attrition, optimize promotional strategies, and elevate overall service quality, ultimately ensuring customer loyalty and achieving sustainable growth in a highly competitive market.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.