Image from Google Jackets

Efficacy of an active compound of the herb, ashwagandha in prevention of stress induced hyperglycemia

By: Contributor(s): Publication details: M. P. Innovare Academic Sciences Pvt Ltd 2018Edition: Vol. 10(10), July-AugustDescription: 44-49Subject(s): Online resources: In: International journal of pharmacy and pharmaceutical scienceSummary: Objective: To find out whether an isolated compound (IC) from the ethanolic extract of roots of ashwagandha prevents stress-induced hyperglycemia by direct interference with the action of increased concentration of corticosterone on hepatocytes or by preventing hyper-secretion of corticosterone or both. Methods: A group of rats served as controls, and those in another group were subjected to restraint (1 h) and forced swimming exercise (15 min), after a gap of 4 h daily for 4 w. The third group of rats received orally IC (5 mg/kg bw/rat) 1 h prior to exposure to stressors. After the last treatment period, a blood sample was collected and serum was separated for the estimation of corticosterone and glucose. In in vitro experiment, hepatocytes were treated with different concentrations of corticosterone (100, 200, 300, 400 and 500 ng/ml). In another set of experiment, hepatocytes were treated with different doses of IC (1, 10, 100, 1000 and 10 000 μg/ml of medium) along with corticosterone (400ng/ml). The concentration of glucose and activities of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were determined after the treatment. Results: Stress exposure caused a significant increase in serum concentration of corticosterone and glucose whereas, administration of IC did not result in similar changes. Further, treatment of corticosterone in in vitro significantly increased the activities of PEPCK and G6Pase and concentration of glucose in a dose-dependent manner in hepatocytes. However, treatment with IC did not interfere with the corticosterone-induced an increase in the activities of PEPCK and G6Pase as well as the concentration of glucose in hepatocytes.Conclusion: The in vivo and in vitro resultsput together reveal that IC does not directly interfere with the action of corticosterone on hepatocytes. However, it prevents stress-induced hyperglycemia by suppressing hyper-secretion of corticosterone.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Status Barcode
Articles Abstract Database Articles Abstract Database School of Pharmacy Archieval Section Not for loan 2018415
Total holds: 0

Objective: To find out whether an isolated compound (IC) from the ethanolic extract of roots of ashwagandha prevents stress-induced hyperglycemia by direct interference with the action of increased concentration of corticosterone on hepatocytes or by preventing hyper-secretion of corticosterone or both. Methods: A group of rats served as controls, and those in another group were subjected to restraint (1 h) and forced swimming exercise (15 min), after a gap of 4 h daily for 4 w. The third group of rats received orally IC (5 mg/kg bw/rat) 1 h prior to exposure to stressors. After the last treatment period, a blood sample was collected and serum was separated for the estimation of corticosterone and glucose. In in vitro experiment, hepatocytes were treated with different concentrations of corticosterone (100, 200, 300, 400 and 500 ng/ml). In another set of experiment, hepatocytes were treated with different doses of IC (1, 10, 100, 1000 and 10 000 μg/ml of medium) along with corticosterone (400ng/ml). The concentration of glucose and activities of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were determined after the treatment. Results: Stress exposure caused a significant increase in serum concentration of corticosterone and glucose whereas, administration of IC did not result in similar changes. Further, treatment of corticosterone in in vitro significantly increased the activities of PEPCK and G6Pase and concentration of glucose in a dose-dependent manner in hepatocytes. However, treatment with IC did not interfere with the corticosterone-induced an increase in the activities of PEPCK and G6Pase as well as the concentration of glucose in hepatocytes.Conclusion: The in vivo and in vitro resultsput together reveal that IC does not directly interfere with the action of corticosterone on hepatocytes. However, it prevents stress-induced hyperglycemia by suppressing hyper-secretion of corticosterone.

There are no comments on this title.

to post a comment.
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.