Numerical analysis of unloading-induced rock failure: Insight into strainburst mechanism
Publication details: New York Springer 2018Edition: Vol. 48(3), SeptemberDescription: 558-563pSubject(s): Online resources: In: Indian geotechnical journalSummary: In this technical note, the rock failure process analysis software RFPA2D was used to reproduce unloading-induced brittle failure. Especially, the approach aims to investigate the mechanism and the failure mode of unloading-induced rock failure. Two tunnel excavation models were built to conduct the numerical simulation. Failure characteristic of a single-stage excavation under unloading exhibits a very brittle failure behavior and a sudden and intense energy release. The predominant failure mode is spalling, further developing some local shear failures, with fractures approximately parallel to the excavation boundary. The failure mode of multiple-stage excavation is predominantly shear failure with some local tensile failures. The energy release rates in a single-stage excavation and multiple-stage excavation are compared simultaneously after the unloading, the total energy and the releasable strain energy for the case of a single-stage excavation are much higher than that for multiple-stage excavation. This note presents the rock failure intensity and the damage mode significantly, with satisfactory results.| Item type | Current library | Status | Barcode | |
|---|---|---|---|---|
Articles Abstract Database
|
School of Engineering & Technology Archieval Section | Not for loan | 2018610 |
In this technical note, the rock failure process analysis software RFPA2D was used to reproduce unloading-induced brittle failure. Especially, the approach aims to investigate the mechanism and the failure mode of unloading-induced rock failure. Two tunnel excavation models were built to conduct the numerical simulation. Failure characteristic of a single-stage excavation under unloading exhibits a very brittle failure behavior and a sudden and intense energy release. The predominant failure mode is spalling, further developing some local shear failures, with fractures approximately parallel to the excavation boundary. The failure mode of multiple-stage excavation is predominantly shear failure with some local tensile failures. The energy release rates in a single-stage excavation and multiple-stage excavation are compared simultaneously after the unloading, the total energy and the releasable strain energy for the case of a single-stage excavation are much higher than that for multiple-stage excavation. This note presents the rock failure intensity and the damage mode significantly, with satisfactory results.
There are no comments on this title.