Image from Google Jackets

Information Fusion Under Consideration of Conflicting Input Signals [electronic resource] /

By: Contributor(s): Language: ENG Series: Technologien für die intelligente Automation, Technologies for Intelligent AutomationPublisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer Vieweg, 2017Edition: 1st ed. 2017Description: XIX, 240 p. 58 illus., 35 illus. in color. | Binding - Card Paper |Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783662537527
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 006.3 23
Online resources: In: Springer Nature eBookSummary: This work proposes the multilayered information fusion system MACRO (multilayer attribute-based conflict-reducing observation) and the µBalTLCS (fuzzified balanced two-layer conflict solving) fusion algorithm to reduce the impact of conflicts on the fusion result. In addition, a sensor defect detection method, which is based on the continuous monitoring of sensor reliabilities, is presented. The performances of the contributions are shown by their evaluation in the scope of both a publicly available data set and a machine condition monitoring application under laboratory conditions. Here, the MACRO system yields the best results compared to state-of-the-art fusion mechanisms. The author Dr.-Ing. Uwe Mönks studied Electrical Engineering and Information Technology at the OWL University of Applied Sciences (Lemgo), Halmstad University (Sweden), and Aalborg University (Denmark). Since 2009 he is employed at the Institute Industrial IT (inIT) as research associate with project leading responsibilities. During this time he completed his doctorate (Dr.-Ing.) in a cooperative graduation with Ruhr-University Bochum. His research interests are in the area of multisensor and information fusion, pattern recognition, and machine learning.
List(s) this item appears in: Springer Nature eBooks
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

This work proposes the multilayered information fusion system MACRO (multilayer attribute-based conflict-reducing observation) and the µBalTLCS (fuzzified balanced two-layer conflict solving) fusion algorithm to reduce the impact of conflicts on the fusion result. In addition, a sensor defect detection method, which is based on the continuous monitoring of sensor reliabilities, is presented. The performances of the contributions are shown by their evaluation in the scope of both a publicly available data set and a machine condition monitoring application under laboratory conditions. Here, the MACRO system yields the best results compared to state-of-the-art fusion mechanisms. The author Dr.-Ing. Uwe Mönks studied Electrical Engineering and Information Technology at the OWL University of Applied Sciences (Lemgo), Halmstad University (Sweden), and Aalborg University (Denmark). Since 2009 he is employed at the Institute Industrial IT (inIT) as research associate with project leading responsibilities. During this time he completed his doctorate (Dr.-Ing.) in a cooperative graduation with Ruhr-University Bochum. His research interests are in the area of multisensor and information fusion, pattern recognition, and machine learning.

There are no comments on this title.

to post a comment.
Share
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.