| 000 | a | ||
|---|---|---|---|
| 999 |
_c20728 _d20728 |
||
| 003 | OSt | ||
| 005 | 20240313132227.0 | ||
| 008 | 240313b xxu||||| |||| 00| 0 eng d | ||
| 040 |
_aAIKTC-KRRC _cAIKTC-KRRC |
||
| 100 |
_920311 _a Ansari, Ali Imran |
||
| 245 | _aReview on materials application in scaffold design by fused deposition method | ||
| 250 | _aVol.104(6), Dec | ||
| 260 |
_aUSA _bSpringer _c2023 |
||
| 300 | _a1247-1265p. | ||
| 520 | _aThe review article focuses on ABS-based scaffold design in fused deposition modeling (FDM) method. In tissue engineering TE, the scaffold serves as a supporting material that can be seeded with cells and/or other supplementary components, is created in vitro, and then used as an implant for damaged tissue regeneration. With regard to its mechanical characteristics and cell culture capabilities, additive manufacturing (AM) methodologies like 3-dimensional printing, stereolithography (SLA), fused deposition modeling (FDM), selective laser sintering (SLS), 3D-plotter, phase-change-jet printing, and (LDP)-low-temperature deposition can satisfactorily create such complicated and convoluted frameworks. The use of 3D printing in the healthcare profession has numerous benefits, such as the ability to personalize pharmaceutical devices, medications, and equipment, in addition to being cost efficient and improving efficiency. Customized prostheses, fixtures, and surgical instruments have a favorable influence by minimizing the time necessary for surgery and recuperation and enhancing clinical rates of success. Furthermore, in terms of boosting production, conventional production techniques like milling, casting, and machining generate objects far slower than 3D printing. Thus, this, in turn, helps in cutting down fabrication time. The bulk of studies on the use of biomaterials for 3D printing have been on biological applications. This research paper investigates how the FDM practice employs diverse biomaterials for biomedical reasons and how we can improve the porosity and mechanical qualities of the printed scaffold by combining FDM with different additional procedures (such CO2 gas foaming techniques). | ||
| 650 | 0 |
_94626 _aMechanical Engineering |
|
| 700 |
_920312 _aSheikh, Nazir Ahmad |
||
| 773 | 0 |
_dKolkata Institution of Engineers (India) _x2250-0545 _tJournal of the institution of engineers (India): Series C |
|
| 856 |
_uhttps://link.springer.com/article/10.1007/s40032-023-00988-z _yClick here |
||
| 942 |
_2ddc _cAR |
||