000 a
999 _c20728
_d20728
003 OSt
005 20240313132227.0
008 240313b xxu||||| |||| 00| 0 eng d
040 _aAIKTC-KRRC
_cAIKTC-KRRC
100 _920311
_a Ansari, Ali Imran
245 _aReview on materials application in scaffold design by fused deposition method
250 _aVol.104(6), Dec
260 _aUSA
_bSpringer
_c2023
300 _a1247-1265p.
520 _aThe review article focuses on ABS-based scaffold design in fused deposition modeling (FDM) method. In tissue engineering TE, the scaffold serves as a supporting material that can be seeded with cells and/or other supplementary components, is created in vitro, and then used as an implant for damaged tissue regeneration. With regard to its mechanical characteristics and cell culture capabilities, additive manufacturing (AM) methodologies like 3-dimensional printing, stereolithography (SLA), fused deposition modeling (FDM), selective laser sintering (SLS), 3D-plotter, phase-change-jet printing, and (LDP)-low-temperature deposition can satisfactorily create such complicated and convoluted frameworks. The use of 3D printing in the healthcare profession has numerous benefits, such as the ability to personalize pharmaceutical devices, medications, and equipment, in addition to being cost efficient and improving efficiency. Customized prostheses, fixtures, and surgical instruments have a favorable influence by minimizing the time necessary for surgery and recuperation and enhancing clinical rates of success. Furthermore, in terms of boosting production, conventional production techniques like milling, casting, and machining generate objects far slower than 3D printing. Thus, this, in turn, helps in cutting down fabrication time. The bulk of studies on the use of biomaterials for 3D printing have been on biological applications. This research paper investigates how the FDM practice employs diverse biomaterials for biomedical reasons and how we can improve the porosity and mechanical qualities of the printed scaffold by combining FDM with different additional procedures (such CO2 gas foaming techniques).
650 0 _94626
_aMechanical Engineering
700 _920312
_aSheikh, Nazir Ahmad
773 0 _dKolkata Institution of Engineers (India)
_x2250-0545
_tJournal of the institution of engineers (India): Series C
856 _uhttps://link.springer.com/article/10.1007/s40032-023-00988-z
_yClick here
942 _2ddc
_cAR