000 a
999 _c22536
_d22536
003 OSt
005 20250321111635.0
008 250321b xxu||||| |||| 00| 0 eng d
040 _aAIKTC-KRRC
_cAIKTC-KRRC
100 _913434
_aBhattacherjee, Dipankana
245 _aCentrifuge model studies on the use of hybrid-geosynthetic inclusions in slopes subjected to infiltration
250 _aVol.54(5), Oct
260 _aGermany
_bSpringer
_c2024
300 _a1897-1911p.
520 _aRainfall-triggered slope failures have increased globally by over 70% in the last decade, as a direct implication of climate change. This can be counteracted by having good quality granular material to allow quick dissipation of pore water pressures. In the absence of permeable soils, the response of slopes with marginal soil during infiltration events can be improved by the simultaneous provision of preferential drainage channels and reinforcement function. The study discusses the effectiveness of inclusion of an assembled geosynthetic material possessing drainage action of a non-woven geotextile and reinforcement characteristic of woven geogrid, referred as a hybrid-geosynthetic. Centrifuge modelling technique was adopted, appropriate scaling laws were established, and a series of centrifuge tests were performed at 30 g on reinforced silty sand slopes of 2V:1H inclination representing 7.2 m height using a custom-designed rainfall simulator. The effect of geosynthetic type and optimum position of hybrid-geosynthetic layers within the slope were investigated. The slope movements, pore water pressure profiles, peak reinforcement strains and potential failure surface were analysed with the help of instrumentation and digital image analysis. The slope reinforced with geogrid indicated continuous build-up of positive pore water pressures during infiltration, while, the slope reinforced with hybrid-geosynthetic encountered lesser rise in phreatic levels by around 40% for the same intensity of rainfall. This resulted in substantially lesser peak strains of about 8% in the hybrid-geosynthetic layer as compared to the geogrids and non-woven geotextiles, wherein peak strain values as high as 48% and 19% respectively were ....
650 0 _94621
_aCivil Engineering
700 _913433
_aViswanadham, B. V. S.
773 0 _x 0971-9555
_tIndian geotechnical journal
_dSwitzerland Springer
856 _uhttps://link.springer.com/article/10.1007/s40098-024-00976-9
_yClick here
942 _2ddc
_cAR