Normal view MARC view ISBD view

Preparation and characterization of capsaicin encapsulated polymeric micelles and studies of synergism with nicotinic acids as potential anticancer nanomedicines

By: Rawan, Shamsheer.
Contributor(s): Sunoqrot, Suhair.
Publisher: Mumbai Wolter Kluwer 2023Edition: Vol.15(3), Jul-Aug.Description: 107-125p.Subject(s): PHARMACEUTICAL BIOTECHNOLOGYOnline resources: Click here In: Journal of pharmacy and bio allied scienceSummary: Capsaicin micelles were prepared by the direct dissolution using the amphiphilic copolymer Pluronic P123 and advanced for substantially novel submicro-nanocytotoxicity. Results: Superior cytotoxicity of capsaicin loaded nanomicelles vs. both the raw capsaicin and reference cisplatin in pancreatic PANC1, breast MCF7, colorectal resistant CACO2, skin A375, lung A549 and prostate PC3 cancer cell lines were delineated. Nicotinic acid (NA) derivative 39 (2-Amino IsoNA) had antiinflammatory potential but consistently lacked antiproliferation in MCF7, PANC1 and CACO2. Besides NA derivatives 8 (5-MethylNA) and 44 (6-AminoNA) exhibited lack of antiinflammation but had comparable antitumorigenesis potency to cisplatin in PANC1 cells. Though capsaicin loaded nanomicelles exerted pronounced antiinflammation (with IC50 value of 510 nM vs. Indomethacin’s) in lipopolysacchride-induced inflammation of RAW247.6 macrophages; they lacked DPPH scavenging propensities. Free capsaicin proved more efficacious vs. its loaded nanocarriers to chemosensitize cytotoxicity of combinations with NAs 1(6-Hexyloxy Nicotinic Acid), 5(6-OctyloxyNA), 8(5-MethylNA), 12(6-Thien-2yl-NA), 13(5,6-DichloroNA) and 44(6-AminoNA) in CACO2, PANC1 and prostate PC3. Conclusion: Capsaicin loaded nanomicelles proved more efficacious vs. free capsaicin to chemo-sensitize antiproliferation of cotreatments with NA derivatives, 1, 5, 8, 12, 13 and 44 (in skin A375), 1, 5, 8 and 12 (in breast MCF7), and 1, 5, 12 and 44 (in lung A549).
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Pharmacy
Archieval Section
Not for loan 2023-1573
Total holds: 0

Capsaicin micelles were prepared by the direct dissolution using the amphiphilic copolymer Pluronic P123 and advanced for substantially novel submicro-nanocytotoxicity.
Results:

Superior cytotoxicity of capsaicin loaded nanomicelles vs. both the raw capsaicin and reference cisplatin in pancreatic PANC1, breast MCF7, colorectal resistant CACO2, skin A375, lung A549 and prostate PC3 cancer cell lines were delineated. Nicotinic acid (NA) derivative 39 (2-Amino IsoNA) had antiinflammatory potential but consistently lacked antiproliferation in MCF7, PANC1 and CACO2. Besides NA derivatives 8 (5-MethylNA) and 44 (6-AminoNA) exhibited lack of antiinflammation but had comparable antitumorigenesis potency to cisplatin in PANC1 cells. Though capsaicin loaded nanomicelles exerted pronounced antiinflammation (with IC50 value of 510 nM vs. Indomethacin’s) in lipopolysacchride-induced inflammation of RAW247.6 macrophages; they lacked DPPH scavenging propensities. Free capsaicin proved more efficacious vs. its loaded nanocarriers to chemosensitize cytotoxicity of combinations with NAs 1(6-Hexyloxy Nicotinic Acid), 5(6-OctyloxyNA), 8(5-MethylNA), 12(6-Thien-2yl-NA), 13(5,6-DichloroNA) and 44(6-AminoNA) in CACO2, PANC1 and prostate PC3.
Conclusion:

Capsaicin loaded nanomicelles proved more efficacious vs. free capsaicin to chemo-sensitize antiproliferation of cotreatments with NA derivatives, 1, 5, 8, 12, 13 and 44 (in skin A375), 1, 5, 8 and 12 (in breast MCF7), and 1, 5, 12 and 44 (in lung A549).

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha